# Midrise Buildings

**CBM** ENGINEERS





In May 2015, CBM Engineers and Optimal Consultancy Services Pvt. Ltd. [OCSPL] entered into an agreement that allows both the parties to share its resources and provide with an array of unsurpassed design services. The corporation, under the helmsmanship of now a bigger management portfolio, stands at a combined resource strength of over 150 technical professionals; making CBM Plus the largest multinational company of the structural engineering discipline, in India.

A new and enriched business model was implemented, which recognised the demands of the current and future assignments and demands of the clients. Progressive interaction between the two sets of staff members, on both a professional and social level, resulted in a unique and unprecedented display of indulgence where a very assorted group of individuals disassembled in their level of knowledge, experience and age, came together to collectively contribute to uplift the CBM Engineers we are today.

This allows CBM Engineers, a powerhouse of knowledge and experience, to provide pristine engineering services and professional excellence to the clients, while ensuring commercial success and employee fulfilment.





# Background



# Background





# Background





#### **Optimisation in Midrise Buildings**

# **Global Presence**



Houston Resources: 60+ Vadodara Resources: 50+ Mumbai Resources: 30+

New Delhi Resources: 20+ **CBM** Engineers India



#### Optimisation in Midrise Buildings

# **Global Presence**





# Key Persons

|                                                                  | Abhay<br>Ghate<br>Director | 40+ years<br>of<br>Experience<br>in<br>Structural<br>Design &<br>Engineering | Design<br>Management<br>Assignments,<br>Scheduling &<br>Quality<br>Control | Recipient of<br>Excellence in<br>Consultancy<br>Services<br>Award 2006 |
|------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|
| Unrestricted<br>Building<br>Height<br>Licence as a<br>Structural |                            | Shekhar<br>Ghate                                                             | 35+ years<br>of<br>Experience<br>in<br>Structural                          | Specialises in<br>coordinated<br>design<br>management                  |
| Dubai and<br>Mumbai.                                             | 14 Am                      | Director                                                                     | Design &<br>Engineering                                                    | projects                                                               |

#### **CBM** Engineers India



#### **Optimisation in Midrise Buildings**

# Key Persons

25+ years of Experience

In-charge of Structural Practice <u>sin</u>ce 15+ years



#### Sandeep Patel Designed Numerous Buildings in USA

#### Chairman of the board (Sterling Group)

Vice President of Engineering

> 25+ Years Experience in Structural Engineering





15+ Years Experience in Structural Engineering

Slaven Seferovic

Jarrod Hamilton

Vice President of Engineering

#### CBM Engineers India



# **Key Persons**

| 12+ years of Exper<br>in Structural Desi<br>Engineering                                                               | rience<br>gn & |                                                                                                                           |          | Kunal<br>Suthar                                                | Closely involved<br>in and manages<br>the overall |
|-----------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|---------------------------------------------------|
| Worked abroad a<br>India on all kind<br>building type                                                                 |                |                                                                                                                           | Director | India. Practices as<br>head of technical<br>staff at Vadodara. |                                                   |
| Responsible for<br>overall setup,<br>implementation<br>of business<br>plans and<br>management of<br>regional offices. |                | years of experience in<br>rket research, general<br>ninistration and client<br>management.<br>ered Accountant<br>nd PGBDM |          | Sejal<br>Desai                                                 |                                                   |
|                                                                                                                       |                |                                                                                                                           |          | d – Business<br>velopment                                      |                                                   |



# Optimisation in Midrise Buildings

1111



# **Classifying Midrise buildings**

#### Midrise Buildings

Upto **G + 10** Floors Upto **30 m** Height Low-rise Buildings

**G + 10** to **G + 25** Floors **30 m** to **75 m** Height

**Gravity Loads** defines and governs the structural design Lateral Loads defines and governs the structural design



# CBM Engineers' Approach

| Structural<br>Systems | Structural<br>Analysis      | Design and<br>Optimisation | Detailing                                                        |
|-----------------------|-----------------------------|----------------------------|------------------------------------------------------------------|
| Gravity System        | Zero – Premium<br>Structure | Load<br>Optimisation       | Identification of<br>lateral and<br>gravity resisting<br>systems |
| Lateral System        |                             |                            | Ductile Detailing                                                |



# Structural System

|                                                                                                                                                                                     | Structural systems for concrete buildings                              |   |   |   |   |   |   |                                         |   |   |   |  |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---|---|---|---|---|---|-----------------------------------------|---|---|---|--|---|
| No.         System         Number of stories           0         10         20         30         40         50         60         70         80         90         100         110 |                                                                        |   |   |   |   |   |   | Ultra-tall buildings<br>120–200 stories |   |   |   |  |   |
| 1                                                                                                                                                                                   | Flat slab and columns                                                  | _ | - |   |   |   |   |                                         |   |   |   |  |   |
| 2                                                                                                                                                                                   | Flat slab and shear walls                                              | - | _ |   |   |   |   |                                         |   |   |   |  |   |
| 3                                                                                                                                                                                   | Flat slab, shear walls and columns                                     | _ | _ |   |   |   |   |                                         |   |   |   |  |   |
| 4                                                                                                                                                                                   | Coupled shear walls and beams                                          | - |   | _ |   |   |   |                                         |   |   |   |  |   |
| 5                                                                                                                                                                                   | Rigid frame                                                            | _ |   | _ | 8 |   |   |                                         |   |   |   |  |   |
| 6                                                                                                                                                                                   | Widely spaced perimeter tube                                           | - |   |   | - |   |   |                                         |   |   |   |  |   |
| 7                                                                                                                                                                                   | Rigid frame with haunch girders                                        | _ |   | - | - |   |   |                                         |   |   |   |  |   |
| 8                                                                                                                                                                                   | Core supported structures                                              | — |   | - | - | _ |   |                                         |   |   |   |  |   |
| 9                                                                                                                                                                                   | Shear wall—frame                                                       | - |   | - | - | - | _ |                                         |   |   |   |  |   |
| 10                                                                                                                                                                                  | Shear wall—Haunch girder frame                                         | _ | - | - | _ | _ | - | -                                       |   |   |   |  |   |
| 11                                                                                                                                                                                  | Closely spaced perimeter tube                                          | _ | _ | - | - |   | - | -                                       |   |   |   |  |   |
| 12                                                                                                                                                                                  | Perimeter tube and interior core walls                                 | _ | _ | _ | - | _ | _ |                                         | _ | _ |   |  |   |
| 13                                                                                                                                                                                  | Exterior diagonal tube                                                 | _ |   | - | _ | _ | - |                                         |   | - | _ |  |   |
| 14                                                                                                                                                                                  | Modular tubes, and spine wall systems<br>with outrigger and belt walls | - |   |   |   |   |   |                                         |   |   |   |  | - |



# Structural System – Gravity Load Resisting System

| Conventional Beam<br>– Slab System                   | Flat Slab System<br>with Drops           | Flat Plate System      |  |
|------------------------------------------------------|------------------------------------------|------------------------|--|
| Presence of sunken<br>slabs<br>Heavy partition walls | Normally proposed for<br>basement Floors | Beam-less floor plates |  |
|                                                      | Drop panel<br>Flat slab                  | Columns Columns        |  |



# Structural System – Cost Effectiveness of Gravity System

Factors reducing the cost of *Formwork* 

**Design repetition** 

Use of standard dimensional units in accordance with the Metric Handbook

Dimensional consistency

Horizontal Framework – 50% cost is incurred for *Formwork* 

Formwork

Gravity System shall optimise the floorto-floor height.

Every 25 mm reduction in floor height yields a saving of
₹ 12 per square foot (approx) 25mm reduction in height / floor

Equals

Saving ₹12 per sq ft



# Structural System – Lateral Load Resisting System

# **Rigid Frames** Economical up to 25 floors

## Advantages

Simplicity and convenience of its rectangular form

Provides internal structural wall-free spaces

## Disadvantages

More columns required

Beam depth may be restricted for clear floor-to-floor height



**Rigid Frames** 



Coupled Shear Walls

# Coupled Shear Walls

Economical up to 25 floors

# Advantages

Providing sheer walls in both direction allows the building to resist lateral loads more effectively.

# Disadvantages

Reduced wall-free spaces

Placement of walls depend on the results of a study on torsional effect on the building



# Structural System – Lateral Load Resisting System

When a rigid frame is combined with shear walls, the resultant system has a very high stiffness

Combination of Shear Walls & Rigid Frames

located at specific places within the frame, like around the lift pits and stairwell, while columns cab ne proposed to enable maximum clear space

Shear Walls can be

Economical up to 40 floors or 125 metres





# Structural System – Lateral Load Resisting System

| Solution varies<br>with the type<br>and<br>configuration of<br>the Building | Points considered<br>while<br>Selecting<br>Lateral<br>System |      | Spans and<br>column spacing<br>Shape and size<br>of the structure |
|-----------------------------------------------------------------------------|--------------------------------------------------------------|------|-------------------------------------------------------------------|
| Floor –to-floor                                                             | Functional                                                   | Plac | cement of lateral                                                 |
| height and total                                                            | requirements                                                 | e    | elements; e.g.:                                                   |
| height of the                                                               | and clear                                                    | arra | angement of core                                                  |
| structure                                                                   | headroom                                                     | wal  | lls, staircase, etc.                                              |



# Structural Analysis – Zero Premium Structure





# Structural Analysis – Cost Effectiveness of Lateral System





# Design Aspects

Suggestions for Optimisation of the Structure

Reduction of overall weight of the structure

- Use of light weight partition reduction in wall dead load by 50%
- Elimination of screed especially at parking floors / garages.
- Elimination of sunken slab.

Advantages of the reduction in the overall weight

- Lower design seismic loads.
- Lighter structure.
- Reduction in foundation sizes and cost.

#### Advantages of elimination of sunken slabs

- Easier formwork system and construction.
- Flat slabs and use of PT systems possible.
- Saves cost and time.



# **Detailing Structural Elements**

#### Case Study – Omkar Altamonte





# **Detailing Structural Elements**

#### Case Study – Omkar Altamonte





# **Detailing Structural Elements**

#### Case Study – Omkar Altamonte

| <u>ч</u>      | <b>Flowsont</b>        |                               | Savings                    |                                      |
|---------------|------------------------|-------------------------------|----------------------------|--------------------------------------|
| ry o<br>Bs    | Element                | Reinforcement (MT)            | Concrete (m <sup>3</sup> ) | Shuttering (m <sup>3</sup> )         |
| avin,         | Columns / Walls        | 400                           | 2200                       | 2500                                 |
| Sa            | Beams                  | 23                            | 336                        | 616                                  |
| 0)            | Slabs                  | 6                             | 140                        | -                                    |
|               |                        |                               |                            |                                      |
| as            | Column No. C74 – C7    | 5 Ductile (Lateral)           | Non Ductile (Gravity)      | Remark                               |
| nks<br>920    | Vertical Reinforcemer  | nt 42 – T16                   | 42 <b>–</b> T16            | Same                                 |
| of li<br>2 13 | Vertical reinforcement | (kg) 260                      | 260                        | Same                                 |
| ment<br>465 8 | Shear Reinforcemen     | t 10T@100 C/C +<br>8T@100 C/C | 8T250 C/C                  | Savings                              |
| nge<br>r IS   | Shear Reinforcement (  | kg) 245                       | 87                         | -                                    |
| Arrai<br>pe   | Total (kg)             | 505                           | 347                        | Saving of158 kg<br>in ties per floor |



# Detailing – Optimisation of Structural Elements

# Column Bar Arrangement

Use of higher bar sizes with maximum spacing

Lesser bars means lesser ties (50% reduction in ties quantities) Optimisation of Structural Elements

By following proper design and detailing practice, structural elements can be further optimised Shear Wall Bar Arrangement

The length of boundary element shall be such that the web wall always has the minimum reinforcement



#### Case Study 1 – Mangla Aura, Vadodara

| Client                        | Sector               | Layout             | Proposed<br>System           |
|-------------------------------|----------------------|--------------------|------------------------------|
| Mangla Properties<br>Vadodara | Residential building | 1B + G + 12 Floors | Flat plates with shear walls |





#### Case Study 1 – Mangla Aura, Vadodara

## Structural layout proposed by CBM Engineers India





Case Study 1 – Mangla Aura, Vadodara

#### Flat Plate with Shear Walls



#### **Proposed System**

Flat Plate (RCC or PT) – Gravity System

Shear Walls – Lateral System





#### Case Study 1 – Mangla Aura, Vadodara

#### Load Comparison

| CONVENTIONAL SYSTEM (with 300 mm TOILET SUNKS) |                           |       |               |  |  |  |  |  |
|------------------------------------------------|---------------------------|-------|---------------|--|--|--|--|--|
|                                                |                           | WEIGH | IT (KN)       |  |  |  |  |  |
| LUAD TYPE                                      | AD TYPE ELEMENT           |       | PER 12 FLOORS |  |  |  |  |  |
| DEAD LOAD                                      | BEAMS (230 X 600)         | 700   | 8400          |  |  |  |  |  |
|                                                | RCC SLABS (200 MM)        | 2640  | 31680         |  |  |  |  |  |
|                                                | TOILET SUNK (300 mm sunk) | 360   | 4320          |  |  |  |  |  |
| SUPER DEAD LOAD                                | FINISHES                  | 800   | 9600          |  |  |  |  |  |
|                                                | TOTAL                     | 4500  | 54000         |  |  |  |  |  |

| FLAT PLATE WITH SHEAR WALLS |                          |             |               |  |  |  |  |  |
|-----------------------------|--------------------------|-------------|---------------|--|--|--|--|--|
|                             |                          | WEIGHT (KN) |               |  |  |  |  |  |
| LOAD TYPE ELEMENT           |                          | PER FLOOR   | PER 12 FLOORS |  |  |  |  |  |
| DEAD LOAD                   | PT SLABS (165 MM)        | 2178        | 26136         |  |  |  |  |  |
| SUPER DEAD LOAD             | SUPER DEAD LOAD FINISHES |             | 9600          |  |  |  |  |  |
|                             | TOTAL                    | 2978        | 35736         |  |  |  |  |  |

TOTAL REDUCTION OF DEAD LOAD = 50%



Case Study 1 – Mangla Aura, Vadodara

Advantages of the Proposed System

# Lesser FormworkClear Floor-to-floor HeightMajor cost component eliminated.<br/>Table form shuttering can be used.<br/>Lesser shuttering = Faster constructionCleat floor-to-floor height can be achieved.<br/>25mm reduction in height / floor = ₹ 12 per<br/>sq ftMEP LayoutAbsence of Internal Walls

Easier to lay out MEP services due to continuous flat bottom and neat grid.

Flexibility at the later stages during construction



Case Study 1 – Mangla Aura, Vadodara

Advantages of the Proposed System

# Ease in coordination - Structurally Less amount of structural drawings produced – only slabs and shear walls. Ease in coordination at site

# Beam Column Joint

#### Elimination of beam – column junction \_\_\_\_\_\_ reinforcement





![](_page_31_Picture_11.jpeg)

![](_page_31_Picture_12.jpeg)

![](_page_32_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

Client Godrej Properties Panvel, Maharashtra

Sector Residential building

#### **Proposed System** Flat Plates with Periphery Beams, Shear Walls and Columns.

Layout 2B + G + 22 Floors

![](_page_33_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

#### Architectural Layout

![](_page_33_Figure_6.jpeg)

![](_page_34_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

Structural layout proposed by Main Structural Consultant

![](_page_34_Figure_6.jpeg)

![](_page_35_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

## Structural layout proposed by CBM Engineers India

![](_page_35_Figure_6.jpeg)

![](_page_36_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

#### Structural layout proposed by Main Structural Consultant

![](_page_36_Picture_6.jpeg)

![](_page_37_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

## Structural layout proposed by CBM Engineers India

![](_page_37_Picture_6.jpeg)

![](_page_38_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

#### Quantity Comparison – Main Structural Consultant

|                          |                  |          | CONC   | CRETE |        | Datia                 | Datia        | Datia        |  |
|--------------------------|------------------|----------|--------|-------|--------|-----------------------|--------------|--------------|--|
| TOWER                    | ELEMENT          | (Fe 500) | M25    | M30   | Total  | Ratio                 | Ratio        | Natio        |  |
|                          |                  | (kg)     | (m³)   | (m³)  | (m³)   | (Kg /m <sup>3</sup> ) | (Kg /sq.ft.) | (m3 /sq.ft.) |  |
|                          |                  |          |        |       |        |                       |              |              |  |
|                          | COLUMN /<br>WALL | 197500   | -      | 930   | 930    | 212.4                 | 1.89         | 0.0089       |  |
| TOWER 1 - C<br>BLOCK - 2 | BEAM             | 148400   | 1120   | -     | 1120   | 132.5                 | 1.42         | 0.0107       |  |
|                          | SLAB             | 78000    | 1079   | -     | 1079   | 72.3                  | 0.75         | 0.0103       |  |
|                          |                  |          |        |       |        |                       |              |              |  |
| TO                       | TAL              | 423900   | 2199.0 | 930.0 | 3129.0 | 135.5                 | 4.06         | 0.0300       |  |

|                        | = | 746.0  | m²              |
|------------------------|---|--------|-----------------|
| SLAB AREA OF ONE FLOOR | = | 8025.8 | Ft <sup>2</sup> |

| TOTAL SLAB AREA OF 13 | = | 9698.0   | m²              |
|-----------------------|---|----------|-----------------|
| FLOORS                | = | 104335.0 | Ft <sup>2</sup> |

![](_page_39_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

#### Quantity Comparison – CBM Engineers India

|                          |                  |          | CONCRETE |       |        | Datia    | Datia        | Datia        |
|--------------------------|------------------|----------|----------|-------|--------|----------|--------------|--------------|
| TOWER                    | ELEMENT          | (Fe 500) | M25      | M30   | Total  | Katio    | Ratio        | Katio        |
|                          |                  | (kg)     | (m³)     | (m³)  | (m³)   | (Kg /m³) | (Kg /sq.ft.) | (m3 /sq.ft.) |
|                          |                  |          |          |       |        |          |              |              |
|                          | COLUMN /<br>WALL | 193000   | -        | 857   | 857    | 225.2    | 1.85         | 0.0082       |
| TOWER 1 - C<br>BLOCK - 2 | BEAM             | 112000   | 815      | -     | 815    | 137.5    | 1.07         | 0.0078       |
|                          | SLAB             | 104000   | 1300     | -     | 1300   | 80.0     | 1.00         | 0.0125       |
|                          |                  |          |          |       |        |          |              |              |
| TO                       | TAL              | 409000   | 2114.8   | 857.0 | 2971.8 | 137.6    | 3.92         | 0.0285       |

| SLAB AREA OF ONE FLOOR | = | 746.0  | m²              |
|------------------------|---|--------|-----------------|
|                        | = | 8025.8 | Ft <sup>2</sup> |

| TOTAL SLAB AREA OF 13 | = | 9698.0   | m²              |
|-----------------------|---|----------|-----------------|
| FLOORS                | = | 104335.0 | Ft <sup>2</sup> |

![](_page_40_Picture_1.jpeg)

#### Case Study 2 – Godrej City, Panvel

| Advantages                                                                             | Disadvantaged                                    |
|----------------------------------------------------------------------------------------|--------------------------------------------------|
| <b>Periphery Beams</b><br>To maintain the external<br>architectural elevation / facade | Better suitable for sunken slab-<br>free toilets |
| Beam-free Spaces                                                                       |                                                  |
| Flexibility of merging flats.                                                          |                                                  |
| Ease for service ducts.                                                                |                                                  |
| Central AC systems can be proposed                                                     |                                                  |

![](_page_41_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

Client Godrej Properties Nagpur

Sector Residential building

Proposed System RCC Beam Slab

Layout 1B + G + 20 Floors

Architectural Layout (Tower F)

![](_page_41_Figure_10.jpeg)

![](_page_42_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

Structural layout proposed by Previous Structural Consultant

![](_page_42_Figure_6.jpeg)

Structural Layout (Tower F)

F

![](_page_43_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

#### Structural layout proposed by Main Structural Consultant

![](_page_43_Picture_6.jpeg)

![](_page_44_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

### Architectural Layout (Tower N)

![](_page_44_Figure_6.jpeg)

![](_page_45_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

#### Structural layout proposed by CBM Engineers India

![](_page_45_Figure_6.jpeg)

![](_page_46_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

## Structural layout proposed by CBM Engineers India

![](_page_46_Picture_6.jpeg)

![](_page_47_Picture_1.jpeg)

#### Case Study 3 – Godrej Anandam, Nagpur

#### Quantity Comparison – CBM Engineers India

|             |            | STEEL    | CONCRETE |        |       |        |        | Datia    | Detia       | Datia        |
|-------------|------------|----------|----------|--------|-------|--------|--------|----------|-------------|--------------|
| TOWER ELEME |            | (Fe 500) | M25      | M30    | M35   | M40    | TOTAL  | Ratio    | Ratio       | Katio        |
|             | ELEMENT    | (kg)     | (m³)     | (m³)   | (m³)  | (m³)   | (m³)   | (Kg /m³) | (Kg/sq.ft.) | (m3 /sq.ft.) |
|             |            |          |          |        |       |        |        |          |             |              |
|             | COLUMN     | 171500   | -        | 361    | 477   | 700    | 1538   | 111.5    | 0.83        | 0.0074       |
|             | WALL       | 82000    | -        | 263    | 285   | 428    | 976    | 84.0     | 0.39        | 0.0047       |
| TOWER N     | BEAM       | 235750   | 1497     | -      | -     | -      | 1497   | 157.5    | 1.13        | 0.0072       |
|             | SLAB       | 170000   | 2575     | -      | -     | -      | 2575   | 66.0     | 0.82        | 0.0124       |
|             | STAIR CASE | 34000    | 300      | -      | -     | -      | 300    | 113.3    | 0.16        | 0.0014       |
|             | RAFT       | 198500   | -        | 1642   | -     | -      | 1642   | 120.9    | 0.96        | 0.0079       |
|             |            |          |          |        |       |        |        |          |             |              |
|             | TOTAL      | 891750   | 4371.5   | 2266.0 | 762.0 | 1128.0 | 8527.5 | 104.6    | 4.29        | 0.0410       |

| SLAB AREA OF ONE FLOOR | = | 920.0  | m²              |
|------------------------|---|--------|-----------------|
|                        | = | 9897.7 | Ft <sup>2</sup> |

| TOTAL SLAB AREA OF 21<br>FLOORS | = | 19320.0  | m²              |
|---------------------------------|---|----------|-----------------|
|                                 | = | 207852.3 | Ft <sup>2</sup> |

![](_page_48_Picture_1.jpeg)

#### Case Study 4 – Godrej Garden City, Ahmedabad

Client Godrej Properties Ahmedabad

Sector Residential building

Proposed System Option 1 – with sunken slabs Option 2 – without sunken slabs

> Layout 1B + G + 12 Floors

![](_page_49_Picture_1.jpeg)

#### Case Study 4 – Godrej Garden City, Ahmedabad

# Structural layout proposed by CBM Engineers India Option 1 – With Sunken Slabs

![](_page_49_Figure_6.jpeg)

![](_page_50_Picture_1.jpeg)

Case Study 4 – Godrej Garden City, Ahmedabad

# Structural layout proposed by CBM Engineers India Option 1 – With Sunken Slabs

![](_page_50_Picture_6.jpeg)

![](_page_51_Picture_1.jpeg)

#### Case Study 4 – Godrej Garden City, Ahmedabad

# Structural layout proposed by CBM Engineers India Option 2 – Without Sunken Slabs

![](_page_51_Figure_6.jpeg)

![](_page_52_Picture_1.jpeg)

Case Study 4 – Godrej Garden City, Ahmedabad

Structural layout proposed by CBM Engineers India Option 2 – Without Sunken Slabs

![](_page_52_Picture_6.jpeg)

![](_page_53_Picture_1.jpeg)

**Overall Reinforcement Quantities Derived** 

| Mangla Properties – Aura,<br>Vadodara | Godrej Properties,<br>Godrej Garden City, Ahmedabad                                             |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
| CBM Engineers India                   | CBM Engineers India                                                                             |
| Structural Steel Quantity             | Structural Steel Quantity                                                                       |
| <b>3.75</b> kg/ft²                    | $\begin{array}{c} 2.70 \\ \text{kg/ft}^2 \\ \text{Option 2 - without sunken slabs} \end{array}$ |

![](_page_54_Picture_1.jpeg)

**Overall Reinforcement Quantities Derived** 

| Godrej Properties – Godrej Anandam,<br>Nagpur |                                   |  |  |
|-----------------------------------------------|-----------------------------------|--|--|
| Previous Structural Consultant                | CBM Engineers India               |  |  |
| Structural Steel Quantity                     | Structural Steel Quantity         |  |  |
| 6.00<br>kg/ft <sup>2</sup>                    | <b>4.50</b><br>kg/ft <sup>2</sup> |  |  |

![](_page_55_Picture_1.jpeg)

# Conclusion

Selection of an appropriate Lateral load resisting system

For high rise buildings, major portion of total steel consumption is in the lateral system. Comparison of different lateral systems is necessary to arrive at the most cost effective solution Selection of an appropriate Gravity load resisting system

The savings will be lesser then those obtained from lateral systems

Efforts shall be towards the selection of formwork, the horizontal framework system including the possible use of PT Efficient detailing practices for different structural elements

Analysis is Universal, Design is National and Detailing is Personal.

Lateral loads are code based, but attention shall be given to reduce the gravity load in terms of Light weight partition walls, elimination of sunk slabs and screed

![](_page_56_Picture_0.jpeg)

![](_page_57_Picture_1.jpeg)

#### **Optimisation in Midrise Buildings**

# Get in Touch

#### Pan-India Presence

Delhi NCR 216A/13 First Floor, Gautam Nagar, New Delhi 110 049 Tel: +91 (0)11 4164 2803 / 2804

#### Vadodara

[HO– India Operations] FF 1 to 12, Sun Enclave, Opp. Jalaram Temple, Karelibaug, Vadodara 390 018 Tel: +91 (0)265 248 1835

#### Mumbai

A - 523/524, Bonanza, Sahar Plaza, Andheri Kurla Road, Andheri East, Mumbai 400 059 Tel: +91 (0)22 6127 5143

![](_page_57_Picture_10.jpeg)

![](_page_58_Picture_1.jpeg)

# Get in Touch

#### Vaibhav Khatri

Manager – Business Development (M) +91 99099 42244 (E) vkhatri@cbmengineers.com

## Kunal Suthar Director

(M) +91 98257 11982(E) ksuthar@cbmengineers.com

We are always eager to meet you and build upon new relationships.

#### Sejal Desai

Head – Business Development (M) +91 98202 67044 (E) sdesai@cbmengineers.com

Contact our Business Development Executives

Abhay Ghate Director (M) +91 93124 34389 (E) abhay.ghate@optimal.in

For General Enquiries: cbmengineers@segoc.com

# A Structural Engineering Powerhouse

![](_page_59_Picture_1.jpeg)

www.cbmengineers.com • www.segoc.com • www.optimal.in

(Sho)

(2)